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Abstract

Small elastic vibrations of two particulate composites that are caused by a non-plane time-harmonic wave are in-
vestigated. Effects of the adhesive interface and distinct periodic structures on the transmission and reflection of
acoustic waves are rigorously analyzed. A two-scale asymptotic expansion with interfacial correctors is introduced to
account for the macro- and micromechanical effects on wave propagation. An efficient algorithm is developed for
computing first and second order corrections for the coefficients that depend on the composites microstructure and the
interfacial constraint.
© 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The growing use of advanced materials requires further improvements in the material characterization
methods in order to monitor the tailoring of material properties and in-service performance of complex
composite systems. Mathematical modeling is instrumental in the ongoing optimization of multi-layer
designs and characterization techniques for multifunctional hybrid systems and composite structures
(Harik et al., 2000; Almroth et al., 1981). Now, multiple layers of single-purpose materials are being re-
placed in various structures by their multipurpose counterparts. The full advantage of hybrid composites
can be realized only when the microstructural damage is controlled during processing (Harik and Cairn-
cross, 1999), service and repairs.

Acoustic sensing techniques such as acoustic emission (AE), ultrasonic testing and through-transmission
ultrasonics (TTU) have been widely used for the non-destructive evaluation (NDE) and material charac-
terization of advanced materials and repaired structures (Harik et al., 2000; Arrington, 1990; Kline, 1992).
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During the NDE, an acoustic wave is introduced into one side of a composite and received by the sensors on
the opposite side. The amplitude of the acoustic wave received is analyzed in the evaluation of material
(Almroth et al., 1981) and imperfectly contacting interfaces (Harik and Cairncross, 1999) will reduce the
amplitude of the received signal and the corresponding transmission coefficients (Kline, 1992). In ultrasonic
testing, the frequency bandwidth includes the slow kilohertz and fast megahertz waves (Cracknell, 1980).
The TTU characterization of damage is usually performed in the frequency range of about 100 kHz to about
10 MHz (Cracknell, 1980). In composites, a typical attenuation of a wave amplitude is high, so the test
frequency is often reduced to compensate. For most high performance thermoplastic composites, the sound
wavelength, 4, is on the order of millimeters (Tackett, 1999), while the typical diameter of glass fibers is about
20 um. The wavelength, 4, is usually much larger than the fiber diameter, 27 (i.c., 4 > r¢). As a result, the
propagation of waves may not always be sensitive to individual fibers, but rather to the variations in fiber
distribution or significant changes in the fiber or matrix properties as in some bonded hybrid structures.

The basic mathematical tool used in this paper is the theory of homogenization and two-scale asymptotic
expansions (Sanchez-Palencia, 1980; Bakhvalov and Panasenko, 1989). Homogenization of equations of
linearized elastostatics for a single periodic composite is by now classical. Recent extensions concern non-
linear elastostatics (Wu and Ohno, 1999; Jansson, 1992) and non-standard transmission conditions on the
boundary separating constituents (Lene and Leguillon, 1982). A method for homogenization of equations
of elastodynamics has been proposed in Murakami et al. (1992). In all of the above papers, only the case of
a single composite is considered.

In bonded composites, the NDE of the material state is more complex due to the existence of plane in-
terfacial regions along the adhesion line. Interpretation of the AE results and material characterization are
inhibited by the unknown interfacial structure and properties and their effect on the transmission of acoustic
waves. The TTU is sensitive to a lack of intimate contact caused by the air gaps that result from imperfectly
contacting surfaces at the interface (Tackett, 1999). These interfacial defects will reduce the amplitude of
transmitted waves by reflecting a portion of the incident acoustic wave train. Similar effects are caused by the
sudden changes in the material properties as at the adhesive interfaces between the two bonded composites
with distinct material properties. In composites, adhesive zones may form so-called interphase regions with
unique mechanical properties that may affect the macroscopic behavior of these materials.

The commonly used formulae for the transmission and reflection coefficients neglect the effect of
composite microstructure by employing the average properties of bonded materials (Krautkramer and
Krautkramer, 1983). The constraining effect of one bonded composite on another is also neglected. A lack
of accessible algorithms for computing the first and second order corrections to the effective reflection and
transmission coefficients at the plane interfaces separating different composites is evident. This paper
presents a rigorous method for developing the computational algorithms needed.

In this paper, a two-scale asymptotic expansion with interfacial correctors is introduced to account for
the effects of the adhesive interface and distinct periodic structures on the transmission and reflection
coefficients. To evaluate these coefficients for two vibrating composites, an efficient algorithm is developed
for the derivation of first and second order corrections at the interface. In the proposed method, the amount
of computation needed to compute the next correction is basically independent of the number of the
correction. A different method proposed by Avellaneda et al. (1999) requires solving ever larger linear
systems of equations. In contrast to Avellaneda et al., our method involves only solving some periodic or
partially periodic cell problems on each step.

2. Mathematical formulation of the problem

The problem of acoustic wave propagation is formulated for a system of two elastic composites sepa-
rated by an adhesive interface. The volumes of two particulate composites are large. In three dimensions,
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Fig. 1. Two composites separated by a plane interface.

the bonded composites occupy half-spaces K, = {x; > 0} and K_ = {x3 < 0}, respectively. The signs + or
— will be used below to indicate the half-space in which a quantity is defined. A plane interface between the
two materials is located at x; = 0 (see Fig. 1).

Both composites are periodic with the cubic cells of the edge length /.

The volume of a cell is divided into parts filled by the constituents of a composite. The cells on each side
have the same basic shape and size, but otherwise they may be different, both in terms of the geometry of
reinforcing phases, and the material properties of particulates and matrices (see Fig. 2).

The structure of two bonded composites has two well separated length scales. The cell size / introduces
the microscopic length scale. The second, macroscopic length scale is associated with a size of the whole
specimen, or with any other measurement that is large compared to /. These aspects of the problem allow us
to use homogenization (or averaging) techniques (Bakhvalov and Panasenko, 1989), and the two-scale
asymptotic expansions. In the context of wave propagation, the macroscopic scale is introduced by a typical
wave length A. Although the two-scale description works especially well when A is much larger than /, i.e.

1
‘=7
is a small parameter, the method presented can be also useful in the so-called resonance regime when the
wave length is comparable with the cell size.

Another straightforward extension of the theory presented in the paper concerns the case of different
(non-cubic) cells on opposite sides of the interface. All the mathematical results will apply without change if
the cells of periodicity C™ and C~ adjacent to the interface have a common side of length /., and the other
sides are different (see Fig. 3).
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Fig. 2. Periodicity cells.
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Fig. 3. Different cell structures with the same /.

In that case, one simply changes the definition of the small parameter by writing

A

lmax

€ =

where /., is the largest side length of the cells C* and C™.

Furthermore, our method allows one to treat the case of different side lengths at the interface. This
situation is schematically represented on Fig. 4. The lengths of the sides adjacent to the interface are de-
noted by /* and [, respectively.

Our method of interface homogenization requires existence of an infinite strip which contains periodicity
cells on both sides of the interface. The crucial condition which determines applicability of the method is
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Fig. 4. Different cell structures with ratio /*//~ = 3/4: boundaries of the new cells shown in bold.

that the ratio of /™ and /™ is a rational number. In this case there exist two integers m, n such that m cells on
one side of the interface exactly match n cells on the other side. The situation on Fig. 4 corresponds to
m =3, n=4. To apply the method, one needs to redefine periodicity cells. New periodicity cells must
include m “old” cells on one side of the interface, and 7 cells on the other side. The only drawback of this is
the need to enlarge e.

When the ratio of the side lengths in question is irrational, the method may not work. It seems, however
that the condition mentioned above is sufficiently practical, at least when m and n are small. The larger these
numbers, the longer wave lengths will be required for the applicability of the theory presented below.

2.1. Governing equations

In elastic materials, the propagation of acoustic waves can be modeled by the scalar wave equation

p(§)an+div(A(%)VU) =0, (2.1)
where p is density of the material and 4 is a symmetric positive definite matrix of material stiffness coeffi-
cients. Both p and 4 are assumed to be periodic function with period / with respect to each of the variables
X1, X2, x3. We will often refer to such functions as /-periodic.

The model above is chosen mainly to simplify presentation. It already contains all essential difficulties
associated with the problem of interface matching. We note, however that most of results of this paper can
be carried over to the system of linearized elasticity (see Gilbert and Panchenko, 1999).

The acoustic waves are usually time-harmonic, so we look for periodic in time solutions

Ul(x,t) = e ii(x, o)

and then introduce a new unknown u(x, ) = #(xw, ). Then u must satisfy the Helmholtz equation

div(A(E)Vu) + wzp(z)u = 0. (2.2)
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On the interface, we prescribe the standard transmission conditions

[u] =0, (2.3)

[A3k6ku} = O, (24)

where brackets denote the jump of the corresponding quantity across the interface. In (2.4) and everywhere
below the summation convention is employed.

The problem defined by Egs. (2.2) can be reduced to an “averaged” model via the classical method of
two-scale asymptotic expansions (Sanchez-Palencia, 1980; Bakhvalov and Panasenko, 1989). In this
method, the asymptotic solutions have the form of an expansion

u(x, €) zuo(x)—keul(g,x) —|—62u2(§,x> +-e- (2.5)

In the absence of an interface, the theory allows one to calculate effective functions (p) and 4 such that
uy from (2.5) is a solution of the averaged equation

Ao + @ (pug = 0. (2.6)

But this alone does not mean that a solution of the problem (2.2)—(2.4) will be close to v that solves (2.6)
and satisfies the transmission conditions

[v] =0, (2.7)

[A3:0;0] = 0. (2.8)

In this paper we construct a modified two-scale expansion for a solution of the transmission problem
(2.2)—(2.4) that involves interfacial correctors. The leading term v, of this new expansion satisfies (2.6)—
(2.8). We also find an efficient way to compute corrections of all orders to the transmission and reflection
coeflicients.

Analysis of cell problems allows us to further reduce the amount of computation. In Section 4, simplified
formulae for computing the second term of the asymptotics are derived. It is shown that

u(x,€) = vo(x) + (¥ (v) (x, €) + v1(x)) + O(e?),

where V' (vg) depends only on v, and solutions of certain cell problems. The function v; which has a meaning
of a genuine macroscopic correction of order ¢, satisfies the inhomogeneous equation

40501 + ¥ (p)vy = F(vo) (2.9)
and transmission conditions

[t1] = ~[™8,v0, (2.10)

[A30,01] = —[v0 + A3i + *120?  vy), (2.11)

i1in

where k%, 20, %12 are constants, and (p) denotes the average density. One of the main results of the paper
is the formulae for calculating F'(v,) and the constants in terms of 4 and solutions of certain cell problems.
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3. Two-scale asymptotic solutions

In order to use the method of matched asymptotic expansions, one starts by investigating the asymp-
totics of solutions on each side of the interface, ignoring interfacial effects for the time being. Then two
separate inner expansions are adjusted to achieve interface matching.

We begin by postulating two-scale inner asymptotic expansions (Bakhvalov and Panasenko, 1989)

u(x,€) ~ i ! ZN”’i(z)Div(x), (3.1)
pi=0 =l

where the functions N?/(y) are 1-periodic and D' stands for the operator of partial differentiation corres-
ponding to the multiindex i,i, .. .#; of length /.

The main advantage of (3.1) lies in the fact that one can compute the fast-variable terms N?' inde-
pendently of v(x) by solving the so-called unit cell problems.

3.1. Micromechanical vibrations

The derivation of the cell problems follows the standard pattern. We first introduce the fast-variable
v = x/e and consider the two-scale expansion

u(x, y, €) ~ i &y NP (y)Divgy. (3.2)

p,I1=0 li|=1

The two-scale analogue of the differential operator

0 0
(1)

can be written as

0 0 04, o o2 a2
2 (Ap(y) — =44, 4; Ajp———. 3.3
‘ qy; ( #0) 6yk> e ( ay; +Aw Oy Ox; + A Qy;0x; + A ox;0xy (33)
If we now plug (3.2) into the Helmholtz equation (2.2) and collect the terms, we obtain
D 2N T HP (y)D'v ~ 0, (3.4)
L,p=0 |i|=1

where H?* depend on the fast-variable components of the expansion (3.1). The terms of orders e 2 and ¢!
must vanish, hence H*® = H'¥ = 0. This yields

N =N = 1.
For H% and H'' we obtain the expressions
, 04,
H" = div(AVN") + =,
Ok 35
_ . 0Ay (3:3)
H'Y = div(AVN") + —=.
Ok
We will also write explicitly and expression for H>°
H* = —’p(y) + div(4VN??). (3.6)

In a similar fashion, all H? can be calculated.
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Eq. (3.4) will be useful only if we can guarantee that its left hand side is independent of y. Because of the
periodicity assumptions, it is impossible to set all H?* to zero (we refer to Bakhvalov and Panasenko (1989)
for details). Thus we need H?' to be constant. We also need to be able to choose these constants so that the
equations above can be solved for N?’. The requirement of well-posedness for periodic problems then
implies that H7* must be equal to the spatial averages of the expressions on the right of (3.5), (3.6). Since for
any l-periodic function f, the average of div(4V() is zero, we obtain the cell problems

. ; 04 04y
div(AVN*) = — + <—>
( ) Mk Ok

(3.7)
avtaen) =5+ (52,
and
div(ATN) = 0 (p(0) — {p)), (338)

similar, more complicated problems can be obtained for N7 of all orders.
3.2. Macromechanical vibrations

Once N7 nave been determined, one writes the slow variable part as an asymptotic series

o) =3 o)

q=0

and uses previously computed functions N?* to obtain the effective constant coefficient equations for v,. For
the leading term vy one obtains the effective Eq. (2.6). The effective quantities are computed by averaging
periodic functions. In particular, the effective matrix A4 is calculated by the formula

n AN/
o= (T ). 52

1
"= /Q £x)dx, (3.10)

where brackets denote the spatial average.

It is well known (see e.g. Bakhvalov and Panasenko, 1989) that solutions of the periodic problems like
(3.7) are unique up to a constant. This means that an expansion (3.1) is “rigid” and does not provide much
freedom for interface matching, since we can only change the fast-variable functions N7 by a constant. This
is clearly not enough to match these rapidly oscillating functions across the interface. Therefore we need to
mix fast and slow variables while matching. As a consequence, the main advantage of (3.1) evaporates.

A possible way out is the introduction of the so-called boundary layer correctors $7/(x/¢), 1-periodic in
X = (x1,x2) and exponentially decreasing away from the interface. The modified expansions

u(x, €) ~ i oy (Nw'(%‘) +S”’i(§))Div(x), (3.11)

pI=0 li|=!

provides more freedom for matching, but still does not solve the problem. Roughly speaking, the problems
for correctors must be well posed and independent of the slow variable x. Since the slow variable parts D'v,,
and D'v_ are in general different, one ends up with the conditions prescribing the value of both $? and
A3 0,SP" at the interface. In elliptic problems these quantities are not independent, so correctors with the
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desired properties may not exist. To put it differently, our wish to keep the length scales separated can be
difficult to fulfill near the interface.

3.3. Asymptotic expansions with interfacial correctors

The main idea of the method proposed in this paper is to look for the asymptotic expansions

u(x,e)" ~ > Y (NP ME)Dv, + 87D (3.12)
pI=0 li|=t
in K* and
u(x,e)” ~ Y @Y (NP MP)D'v_ + 87D, (3.13)
P1=0 Ji|=t

in K~. The four functions M”' and S?' are boundary layer correctors, that is functions periodic in
% = (x1,x2) with period one, and decreasing exponentially away from the interface.

A way to interpret the “inter-crossed” terms on the right of the above expansions is to view them as the
result of “virtual diffusion” of one composite into another. This means that instead of a thin abstract
interface we see an interfacial zone of very small thickness where the effects of both composite structures are
present. Effective vibrations in each half space influence the outcome of the averaging procedure and the
resulting waves on the opposite side of the interface via the interfacial constraint.

The idea behind (3.12), (3.13) is to make use of the fact that the D'v.. are determined by averages of N?/
independent of the correctors. From the mathematical point of view, the new expansion differs from the
ones discussed in Section 3, since now the terms S’fr’" and MP* have the same slow variable parts, so for this
pair of correctors we can obtain a transmission problem independent of the slow variable. The same
reasoning clearly applies to the pair S7, Mﬁ’i.

To deal with the correctors, we first introduce some notations. We denote by Q the square
{0<x;<1,j=1,2,x3 =0} and by Q. the strip of width one which consists of all unit cubes above a given
cube adjacent to the interface. Also, we let O, to be a strip obtained from Q. by reflecting about the
interface.

To obtain the cell problems for correctors, we repeat the procedure described in Section 3. The only
difference is that now we can choose all H? related to correctors to be zero, since for partially periodic
functions the equation

div(4Vu) =0

can have non-trivial solutions. In particular, we obtain §*° = §'0 = M*0 = MY = 0 on both sides of the
interface. The cell problems for all other correctors have the same general form

div(4*Vu) = f* (3.14)
in K*,

div(4~Vu) = f~
In K,

[u] = &(x), [A3:0,u] = P (%) (3.15)

at the interface. We seek solutions u(%,x;), 1-periodic in x and rapidly decreasing as |x;| — oo together with
their first derivatives.
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4. Analysis of the asymptotic solution
4.1. Analysis of the interfacial effects

Available mathematical results (Oleinik and Yosifian, 1982; Oleinik et al., 1992; Gilbert and Panchenko,
1999) show that in order to control behavior of u for large |x;|, one needs to prescribe ¥ in a special way.
This crucial fact is known in linear elasticity as a version of the St. Venant principle. For the scalar equation
(3.14) we have the following:

If f* decay exponentially away from the interface and

[r@ai= [ rwae- [ rwar (@1)
0 O O

then a solution u of the transmission problems (3.14) and (3.15) can be chosen so that it decays expo-
nentially in K*, and approaches a constant k in K~ with the exponential rate. Moreover, the first derivatives
of u decay exponentially as |x;| — oco. The proof for the system of linear elasticity is available in Gilbert and
Panchenko (1999). Modulo minor changes, the same method works for the scalar problem at hand.

The solutions constructed in this way are not of the boundary layer type even when the ¥ is chosen as in
(4.1). We have a genuine boundary layer only on one side of the interface, while on the other side we can
only guarantee that there is a constant k£ such that u — & is a boundary layer. Contribution of the correctors
can not be ignored away from the interface unless the constant & is zero.

Available mathematical theory makes it possible to calculate the constants in terms of solutions of
certain auxiliary cell problems (see Oleinik et al. (1992), Chapter 1 Theorem 8.5), but in general the con-
stants will differ from zero. We will always choose SP* to be the boundary layers, since these terms are
responsible for the thickness of the interface transition zone. The correctors M?* will in general be “ex-
ponentially stabilizing.”

The above considerations motivate the introduction of the function #, equal to u on one side of the
interface and to u — k on the other, that solves Eqgs. (3.14) and satisfies the transmission conditions

[4] = D(X) + &, [A5:0001) = P (%) + ¢, (4.2)
where ¢ is a constant computed by the formula

- —/ v@dit+ [ de— [ ()dx. (4.3)
Y 0-x o
Below, we will always solve the adjusted cell problems (3.14), (4.2).
The important consequence of the exponential stabilization phenomenon is that constants &' will alter
the inner expansions, and the constants ¥ will enter the effective transmission conditions.

4.2. An algorithm for computing macroscopic interfacial corrections

Let us now outline the procedure for calculating terms of the modified asymptotic expansions with
interfacial correctors.

Step 1. Solve periodic cell problems for Ni‘i. Determine 4. .

Step 2. Solve partially periodic problems (3.14), (4.2) to find the correctors M?” and S%'. Determine the con-
stants kP,

Step 3. Use A, k?', " to obtain the effective equations and transmission conditions for the slow-variable
corrections v,.
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4.3. Approximation of order €

The correctors in (3.12) are not of the boundary layer type in general, as evidenced by the discussion
above. We can guarantee that $%" is a boundary layer, and M?” can be written as a sum of a constant £** and
the boundary layer which we still denote by M. Thus adjusted, the approximation of order € in K is of the
form

P =uy +efvg + (N K+ M)y + SYov, + o) +O(), (4.4)
where M"" and $%" are boundary layers. A similar expression is sought in K~. Eq. (4.4) means in particular
that in the far field away from the interface we have the approximation

ut =uvf +elog + (NY +k))0wg + v ] +O(&). (4.5)
The terms corresponding to k% represent a non-trivial contribution to the far field due to the interaction

between the microstructure and the interface.
Following the general procedure from Section 4.1 we obtain the effective transmission problem for vy.

Aadv0 + (p)vo =0, (4.6)

[ko'olio] = O, (47)

(1810 = 0. (4.8)
For the next slow variable correction v; we find

/iika,-zkvl + (p)v1 = (p) + <AikakN2’0) + fiika?kv()v (4.9)

[K9%,] = —[K%0,1], (4.10)

[toﬁiaivl] _ {tzovo + M0, + tO”’zaihUo (4.11)

Eqs. (4.4)-(4.11) contain functions N°/, N>* and constants k°, k%, /', 72° and /32,

If one were to follow the general algorithm outlined in the previous subsection, the following cell
problems should have been solved.

(1) To obtain N* we need to solve the periodic problem (3.7). Similar periodic cell problem (3.8) should
be solved to obtain NP,

(2) The correctors Mi’ and Si’i are found from the adjusted transmission problem

div(4* VM%) =0, (4.12)
in K,

div(4~VSs») =0
in K~, with the interface conditions

N+ MY R = 8%, | (4.13)
AL (NY + M) = A3 0,8% + 1%

A similar problem can be written for the pair M% 5%,

(3) The constants 1 appear in the transmission condltlons for the interface correctors ML, S1*, M:°,
S0, M} i and S! 12 5o we would need to solve the corresponding cell problems as well. Thus we have
a total of six more problems to solve, two per each pair of the correctors above. The equations and
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transmission conditions are similar to those in Egs. (4.12), (4.13). We emphasize that the correctors are only
partially periodic, so we have to deal with problems in unbounded domains. This may be very time-con-
suming.

4.4. A simplified algorithm for interfacial corrections

Further analysis of the cell problems for correctors can provide useful explicit formulas and substantially
reduce the amount of numerics. In this subsection we present some formulas for the constants mentioned
above. It is remarkable that to use these formulas, we do not need all the correctors listed at the end of the
previous subsection, which leads to an improvement of the method and potentially makes it more effective
for computations. The derivation of the formulae can be found in the Appendix A.

First of all, since N°° = N'* =, and M}° = 52° = 0, we obtain k}° = 1. To determine various z-con-
stants, we make use of the formula (4.3), and the classical formula for the effective matrix 4 (see e.g.
Bakhvalov and Panasenko, 1989). Then we find that

Ty (4.14)

This means that ' and ¥ are found without solving any problems for correctors. All we need is the
effective matrix 4 which is determined from the original matrix 4 and the function N/,
Next we give the formula for 7.

= / AL 9,N*(0, %) d. (4.15)
Qo

Again, we need only the periodic function N> and the matrix 4.
The constants 7, are found from the formula

3i P F

£ = / (4,82 — 45, M22)(%,0) d% (4.16)
o

that requires the knowledge of 4 and the correctors MY and S92,
Now, we have a shortened list of cell problems as follows:

1. Periodic problems for N, N29;
2. Problems for correctors M%, S% that appear explicitly in the asymptotic approximation (4.4). We also
need them to determine k%. Moreover, M and S* enter the formula (4.16).

Comparison of this list with the one given in the beginning of the Section 4.1 shows that the item 3 has
disappeared. Thus we have six less problems to solve numerically.

Since the calculations are exactly the same we will drop + and — from now on. To calculate the
quantities in the formula (4.4), we need to do the following:

1. Solve the periodic cell problems for N% N and N*°. At this step, we determine N* = N/ by solving Eqs.
(3.3), and N?>° are found from (3.4). Using these functions, we calculate the following constants:
o the effective matrix 4 by the formula

/iij = (4N + 4y),
e the constants % = ¢!/ from the formula

0i _ 4
= A3i7
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e the constants 2 from the formula
1‘2’0 = /(Ag.k@sz’O)()?, 0) dx.
(o]

2. Solve the partially periodic problem for the adjusted correctors Mﬂ’[, S% by solving Eqs. (4.12) with the in-
terface conditions (4.13). Then one is able to calculate the constants 1> from the formula (A.16) and
also determine the constants k.

3. Write down the effective transmission problems for vy, v,

A w0+ (p)vg =0 (4.17)
with the interface conditions

[vo] = 0, [A3;0:00] = 0. (4.18)
If we use the equations above to simplify the Egs. (4.9)—(4.11), we obtain

AyB01 + (p)or = (p)(1 = vo) + (4xDN>) (4.19)
with the interface conditions

[v1] = —[k*d0],

[A3001] = [0 + 1207 o).

irip

(4.20)

5. Conclusion

An analysis carried out in Section 4 shows that the leading term of the proposed modified two-scale
expansion behaves consistently with respect to homogenization, in the sense that the transmission condi-
tions are generated by the effective matrices. The next correction, however, can potentially exhibit non-
trivial interplay between the interface and the microstructure. Amazingly, the localized in space boundary
layers may influence the far field through the constants k% and the modified transmission conditions (4.20).
The main result of Section 4 is a reduction in number of the cell problems needed to be solved. Of course,
the bare minimum includes problems for N%, M% and §% which appear explicitly in the modified ex-
pansion. We were able to show that the only additional problem needed is the periodic cell problem for
N2,

Explicit formulae obtained in Section 4 give expressions for all the constants on the right of (4.20) in
terms of the averages of the solutions on the interface. Since these solutions should decay exponentially, one
can concentrate on the bounded region near the boundary to obtain a good approximation.

The only parameter for which no convenient formula has been found is £%. It seems likely that one can
express these constants in terms of the boundary traces of the solutions of the original problem and certain
auxiliary problems in the spirit of Theorem 8.5 in Chapter 1 of Oleinik et al. (1992). But this approach still
requires solving some problems in unbounded domains. From energy decay considerations one should
expect k% = 0 but this does not follow from the theory presented here.

The underlying theoretical considerations are sufficiently general to be applied to the systems of linear
elasticity and even certain problems for poroelastic materials (see Gilbert and Panchenko, 1999). It also
seems that the method proposed in the paper can lead to an effective numerical algorithm which will be the
subject of the future research. We plan to discuss numerics in a separate publication.
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Appendix A
A.1. Derivation of the formula (4.14)

Note that from (4.13) one can get

, Ny’
z&f;/( it +A;>dx. (A.1)
0] k
Let us compare this with the standard formula for the entries of the effective matrix A:
. ONY!
it = / (A;k ae +A;> dx. (A.2)
0 k

These equations are almost the same except for the domain of integration. We want to show that
% = A;;. Writing

O = A% + /QB;id;e. (A3)

where B, = A3k6kN2’i + A3 — A3, we find that the periodic cell equation for Nﬂ‘i can be written as
divB = 0. (A.4)

We also note that (B) = 0. Now integrate (A.4) over 0 and then integrate in x3 from zero to some « < 1.
The integrals containing B;; with j # 3 will be zero because of periodicity. For the rest of the entries of B we
get

/%mmaz/%&@a
0 0

This holds for any « € [0, 1] and therefore the integral of B3, on the right of (A.3) is a constant which we
denote by b. Since B3, are periodic, we must have

1
/ bdx; = (Bj,).
0
But the average of B* is zero, so b =0 and thus t&" = /i;.. Repeating this computation we also get
O = A4,
Next we determine 7.’ since the cell problems for N." are the same as for N)’, and the problems for

correctors with indices 1,7 are the same as the corresponding problems for 0,i-correctors, we get
Li i G+
ty =t = A3i‘

A.2. Derivation of the formula (4.15)
Consider the partially periodic problems for correctors M>°, §29:
div(4*VM?*) =0 (A.5)
in K*,

div(4-VSs*) =0
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in K~, with the interface conditions
2,0 2,0 _ Q2,0
N7 +M7 =87,
A+a N2,0 MZ,O = A70 SZ,O 2,0 (A6)
3kk(++ +)7 3kk,+t+-

Thus 2 is computed from the formula (4.7). Repeating the procedure for the pair M2°,S>° we obtain
(4.15).
We note that this makes it necessary to solve periodic cell problem for N>°

(i ON*") = (p — (p))- (A7)

A.3. Derivation of the formula (4.16)
The procedure is exactly the same for /2 and /%12, so we may drop the superscript. To use the formula
(4.3) we need to determine the value of

/ (A3k6kN0’f1f2 + A3i1N0’il) dx (Ag)
9]

at the interface. The function N%® is the solution of the cell problem

Ou (AN + Ay, N*2) = —f +{f), (A9)
where

f = A, N + 4y,

Using the formula for the effective matrix 4 we find that

(f) = 4y
Note that in the process of calculating % we showed that the integral of the right hand side over Q is
zero. Thus, after integrating (A.9) over Q in x and then from 0 to « in x3 we obtain

o(2) — a(0) = 0, (A.10)

where
O'(O() = / (A3j6jN0"’""2 +A3i1N0'i2>()2', O() d)%,
o

which means that o(a) is constant. Integrating in o from 0 to 1 we find that
a(0) = (43,0;N*"" 4 43, N**). (A.11)

Now we note that the solution of the problem (A.9) is unique up to a constant. We always choose a
constant to be zero, which makes the solution unique. The divergence of the vector

Ak]‘ajNO’iliz + Ak,-l]\[o'i2

on the left of (A.9) does not depend on the average values of its components. Choosing the average of the
third component arbitrarily we do not change the solution. Hence, by uniqueness we conclude that

a(a) = 0. (A.12)
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Furthermore, the pair M’ §%1% is a solution of the partially periodic cell problem

div(ATVMYR) = —A7 MY — 0 (A7 M "),

. _ _ A.13
div(4-VSY1"2) = —A4;,0,8%" — (4, S"?) (A-13)
with the interface conditions
AZOL(ND™ + MOMR) + A3, (ND2 + MEP) = 430,801 4 45, SO (A.14)
Now (4.3) yields
0 = | AN AL N @ 0 [ (8 7,5 5. 0) s
- /Qu;kamim A M) 3 0) g+ /QA:,(akMﬁvfz O M) i
- / / Ay 0S¥ + 0 (4 S dx doxs. (A.15)
0 0o

The first integral in (A.15) is equal to [ o(x3)dx; and is zero in view of (A.12). Next we integrate (A.13)
over K, and K_ and use periodicity in x and exponential decay of derivatives in x; to deduce

/0 /Q Af QM + 0y (4] ML) didx; = /Q A3 O MY (£,0) d% (A.16)
and a similar equation for the terms depending on $%"%, §%2 in (A.15). Thus, (A.15) reduces to
e = /Q (A5, S¥2 — A3, M?2)(%,0) dx. (A.17)

Clearly, a similar formula holds for /%,
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